A ring R is quasi-reversible if 0 ≠ ab ∈ I(R) for a, b ∈ R implies ba ∈ I(R), where I(R) is the set of all idempotents in R. In this short paper, we prove that the ring of 2×2 matrices over an arbitrary field is quasi-reversible, which is an answer to the question given by Da Woon Jung et al. in [Bull. Korean Math. Soc., 56(4) (2019) 993–1006].