2024 : 11 : 24
Dariush Heidari

Dariush Heidari

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: دانشکده علوم پایه
Address:
Phone: 086_43251646

Research

Title
SEMIHYPERGROUPS THAT EVERY HYPERPRODUCT ONLY CONTAINS SOME OF THE FACTORS
Type
JournalPaper
Keywords
Breakable semihypergroup, Hypergroup, Hyperproduct, Semihypergroup of type π_n.
Year
2023
Journal Algebraic structures and their applications
DOI
Researchers Dariush Heidari

Abstract

Breakable semihypergroups, defined by a simple property: every non-empty subset of them is a subsemihypergroup. In this paper, we introduce a class of semihypergroups, in which every hyperproduct of $n$ elements is equal to a subset of the factors, called $\pi_n$-semihypergroups. Then, we prove that every semihypergroup of type $\pi_{2k}$, ($k\geq 2$) is breakable and every semihypergroup of type $\pi_{2k+1}$ is of type $\pi_3$. Furthermore, we obtain a decomposition of a semihypergroup of type $\pi_n$ into the cyclic group of order 2 and a breakable semihypergroup. Finally, we give a characterization of semi-symmetric semihypergroups of type $\pi_n$.